Diplomado en Python y ciencia de datos


Aprende a usar Python partiendo de cero para luego estudiar la forma en que se interactúa con bases de datos y cómo le puedes sacar el máximo partido en el contexto de la ciencia de datos.

Matricúlate Aquí Comparar

Diplomado en Python y ciencia de datos


Aprende a usar Python partiendo de cero para luego estudiar la forma en que se interactúa con bases de datos y cómo le puedes sacar el máximo partido en el contexto de la ciencia de datos.

Matricúlate Aquí Comparar

Diplomado en Python y ciencia de datos



Matricúlate ahora y obtén un
20% dto.

(Precio final CLP $1.752.000)

Quiénes Somos

Clase Ejecutiva UC es el programa de perfeccionamiento profesional Online + Zoom de la Pontificia Universidad Católica de Chile, orientado a actualizar tus conocimientos y entregarte nuevas herramientas y habilidades que te permitirán mejorar, ampliar e incluso transformar tu carrera profesional.

Descripción

El Diplomado en Python y ciencia de datos de Clase Ejecutiva UC se orienta a entregar las competencias de programación y de manejo de datos necesarias para introducirse en las áreas de la ciencia de datos y machine learning. Al no requerir conocimientos previos de programación (se entregan en el primer curso), el diplomado está abierto no solo a personas con un background más técnico, sino a todo tipo de profesionales.

Ciertamente, Python se ha convertido en la herramienta fundamental para los profesionales que trabajan en ciencia de datos e inteligencia artificial. Hay muchos programas de ciencia de datos en que o bien se da por sentado que la persona sabe Python, o que lo aprenderá al mismo tiempo que estudia los contenidos del programa.

Este diplomado ofrece un camino distinto. Primeramente, dedicar todo el esfuerzo al comienzo en aprender a usar este lenguaje, partiendo desde cero para luego aprender la forma en que se interactúa con bases de datos. Y, finalmente, cómo se le puede sacar el máximo partido en el contexto de la ciencia de datos.

Este enfoque tiene dos ventajas importantes. Primero, que entrega las competencias necesarias para usar Python más adelante en otros escenarios y áreas de aplicación; y, segundo, que no exige al estudiante el tener que aprender Python al mismo tiempo que las técnicas y los algoritmos.

El formato del Diplomado en Python y ciencia de datos es 100% en línea y se estructura sobre cuatro cursos que utilizan técnicas metodológicas activas. Gracias a estas últimas, el participante puede interactuar con sus pares y profesor-tutor a través de los recursos tecnológicos que provee la plataforma educativa virtual.

Objetivos

Escribir programas de mediana complejidad usando el lenguaje Python.

Interactuar con un motor de bases datos desde un programa Python.

Diseñar y construir soluciones de ciencia de datos y machine learning usando las librerías disponibles en Python.

Dirigido a

Todas las personas que necesiten o estén interesadas en adquirir las habilidades para aplicar técnicas de ciencia de datos a su trabajo y en aprender a programar usando el lenguaje Python y aplicarlo a la extracción y análisis de datos.

Metodología 100% Online

Aprendizaje interactivo

Contamos con una plataforma interactiva que te permitirá participar de las clases en vivo, interactuar en foros con tus compañeros de clase y acceder a los contenidos de cada curso en cualquier momento, adaptándose a tus necesidades.

Material de estudio

Desde el inicio de tu programa online, tendrás acceso al material de estudio necesario para cada clase. Podrás acceder en cualquier momento y en cualquier lugar a tus clases online, papers, videos y otros recursos.

Clases en Vivo

Cada curso está organizado en 6 a 8 clases online y una clase en vivo, transmitida vía streaming, realizada por nuestros tutores. En esta clase podrás interactuar, realizar preguntas y comentar a tus compañeros de clase.

Acompañamiento de tutores

En cada curso tendrás un tutor académico quien resolverá tus dudas planteadas en la plataforma online. Además las coordinadoras académicas resolverán tus consultas administrativas a través del correo alumnosuc@claseejecutiva.cl

ACLARA TUS DUDAS

Quisimos responder las preguntas que muchos nos hacen a través de este video.

Malla académica



Curso Desarrollo de software con Python
Profesor:  

Cristián Ruz, Docteur Université Nice Sophia Antipolis (Francia)

Plan de estudios

Clases en vivo

Se realizan tres clases en vivo. La primera como ayuda para el primer proyecto de programación con estructuras de datos secuenciales y no secuenciales. La segunda, para apoyar el segundo proyecto acerca de programación orientada a objetos. Y la tercera, como ayuda para el proyecto final. Durante las clases en vivo los estudiantes pueden resolver dudas prácticas respecto a la materia y sus proyectos.

 

Trabajos

Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos. El primero relacionado con el uso de estructuras secuenciales y no secuenciales. El segundo, con programación orientada a objetos. El último proyecto tiene características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto. La evaluación se complementa, además, con cuestionarios de alternativas que miden comprensión sobre los conceptos de cada semana.

Contenidos

Estructuras de datos secuenciales: listas, tuplas, colas
  • Listas y aplicaciones
  • Tuplas y aplicaciones
  • Colas y aplicaciones
  • Comparación de estructuras secuenciales
Estructuras de datos no secuenciales: diccionarios y sets
  • Hash e inmutabilidad
  • Sets y aplicaciones
  • Diccionarios y aplicaciones
  • Comparación de estructuras secuenciales y no secuenciales
Clases, objetos, atributos y métodos
  • Clases
  • Atributos
  • Métodos
  • Implementación de clases, objetos, atributos y métodos
Interacción entre objetos
  • Programa que usa un objeto de una clase
  • Programa con objetos que contienen estructuras de datos
  • Programa con objetos que interactúan con otros objetos
  • Herencia
Uso de módulos y bibliotecas existentes
  • Módulos
  • Paquetes
  • Bibliotecas existentes
  • Importación de módulos y paquetes
Definición de un proyecto orientado a objetos
  • Definición de un proyecto
  • Diseño del proyecto
  • Implementación del proyecto
  • Ejecución del proyecto completo

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Curso Python y bases de datos
Profesor:  

Jaime Navón Cohen, Ph.D University of North Carolina at Chapel Hill (Estados Unidos)

Plan de estudios

Clase en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software, la forma correcta del uso de algunas herramientas, etc.

Trabajo individual

Los participantes deben aplicar los conocimientos aprendidos en tres trabajos o miniproyectos concretos. El primer trabajo (miniproyecto 1) consiste en construir una base de datos a partir de data en formato csv y luego escribir un programa Python que se conecte con dicha base de datos para agregar nuevas filas y formular algunas consultas simples. En el segundo (miniproyecto 2), se trabaja con un dataset más complejo que da origen a una BD con varias tablas y, además, de interactuar desde Python en forma simple, se usa la librería Pandas. En el tercer trabajo (miniproyecto 3), la data debe obtenerse desde una API JSON y se debe escribir un programa Python que cargue esa información en un motor MongoDB para luego hacer consultas sobre él.

Contenidos

Conceptos fundamentales de bases de datos
  • Bases de datos y motores de bases de datos
  • Modelos de dato
  • El modelo relacional
  • Introducción al lenguaje
Interacción con un motor relacional desde un programa Python
  • El lenguaje standard SQL
  • Interactuando con el motor: SQL desde el workbench
  • Conexión con el motor desde un programa Python
  • Creación, eliminación y consultas
Consultas más complejas, transacciones, dataframes
  • Consultas que involucran más de una tabla
  • La necesidad de transacciones
  • Propiedades ACID
  • Introducción al uso de dataframes en Pandas
Operadores de agregación y de conjuntos, carga desde archivos y desde una API
  • Operadores de conjunto
  • Operadores de agregación
  • Carga y procesamiento en Python de información en formato csv
  • Carga y procesamiento en Python de información que viene de una API
Bases de Datos NoSQL y el motor MongoDB
  • Bases de datos NoSQL
  • El motor MongoDB
  • El formato JSON
  • Interacción con MongoDB desde un programa Python
MongoDB desde Python
  • Conexión con el motor
  • Consultas simples
  • Extracción de contenido JSON desde una API
  • Procesamiento de contenido JSON en Python

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Curso Introducción a minería de datos y machine learning
Profesor:  

Mauricio Arriagada Benítez, Doctor Pontificia Universidad Católica de Chile

Plan de estudios

Clase en vivo

Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo la correcta instalación de herramientas de software y el uso apropiado de algunas herramientas. Asimismo, para la preparación de set de datos para la reducción de dimensionalidad, y guiar el trabajo en las diferentes técnicas de reglas de asociación, algoritmos de clasificación, clustering y medidas de similaridad.

Trabajo individual

Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos. El último proyecto suele tener características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto. Los miniproyectos estarán enfocados en: procesar y consolidar datos aplicando ETL (extracción, transformación y carga de datos); utilizar el algoritmo Random Forest y KNN para dos casos propuestos, y realizar el preprocesamiento de una base de datos propuesta, aplicando dos algoritmos de los vistos en clases para así mostrar sus rendimientos a través de evaluar al clasificador y presentar las métricas, pudiendo establecer una comparación de rendimiento entre los dos algoritmos elegidos.

Contenidos

Conceptos fundamentales de la minería de datos
  • Video bienvenida al curso
  • Integración de datos, data warehouse
  • Selección y transformación de datos
  • Install Python Windows
  • Install Python MAC OS y Linux
  • Ejemplo práctico uso de dataframes
Preparación de datos y reducción de información
  • Preparación de datos: normalización, codificación e imputación de datos
  • PCA y t-SNE
  • ETL
  • Ejemplo práctico PCA
  • Ejemplo práctico t-SNE
  • Ejemplo práctico ETL
Reglas de asociación
  • Reglas de asociación: Apriori
  • Reglas de asociación: FP-Growth
  • Reglas de asociación: ECLAT
  • Ejemplo práctico Apriori
  • Ejemplo práctico ECLAT
  • Ejemplo práctico FP-Growth
Algoritmos de clasificación
  • Árboles de decisión
  • Random Forest
  • KNN y Kd-tree
  • Ejemplo práctico árboles de decisión
  • Ejemplo práctico Random Forest
  • Ejemplo práctico KNN
Algoritmos de clustering y medidas de similaridad
  • KMeans
  • Clustering jerárquico
  • DBSCAN
  • Ejemplo práctico KMeans
  • Ejemplo práctico clustering jerárquico
  • Ejemplo práctico DBSCAN
Selección de modelos e introducción a machine learning
  • Introducción a machine learning: modelos supervisados y no supervisados
  • Evaluación de clasificadores
  • Métricas
  • Ejemplo práctico evaluación clasificadores
  • Ejemplo práctico métricas

Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.

Jefe de programa

Diplomado en Python y Ciencia de Datos, curso en python, lenguaje de programación Python, Python y ciencia de datos
Jaime Navón Cohen

Ph.D University of North Carolina at Chapel Hill (Estados Unidos)

Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.). Además tiene un Master of Science, Technion-Israel Institute of Technology (Israel). Es ingeniero civil electricista, Pontificia Universidad Católica de Chile (UC).

Asimismo, es profesor asociado del Departamento de Ciencia de la Computación de la UC.

 

Profesores

Cristián-Ruz
Cristián Ruz

Docteur Université Nice Sophia Antipolis (Francia)

Cristián Ruz es docteur, Université Nice Sophia Antipolis (Francia). También tiene un Magíster en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile (UC). Además, es ingeniero civil en Computación, UC. Actualmente, se desempeña como profesor asistente adjunto del Departamento de Ciencia de la Computación de la UC.  

Jaime Navón Cohen
Jaime Navón Cohen

Ph.D University of North Carolina at Chapel Hill (Estados Unidos)

Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.). Además tiene un Master of Science, Technion-Israel Institute of Technology (Israel). Es ingeniero civil electricista, Pontificia Universidad Católica de Chile (UC). Asimismo, es profesor asociado del Departamento de Ciencia de la Computación de la UC.  

Mauricio Arriagada Benítez
Mauricio Arriagada Benítez

Doctor Pontificia Universidad Católica de Chile

Mauricio Arriagada Benítez es doctor y máster en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile (UC). También es ingeniero civil en Computación e Informática, Universidad de Tarapacá (Chile). Asimismo, tiene un Master in Computer Science, University of Northern Iowa (EE.UU.), y un Máster en Ingeniería de Software, Universidad de Tarapacá (Chile).

Ventajas

Prestigio UC

La Pontificia Universidad Católica de Chile posee más de 120 años educando y formando a los líderes de nuestro país. El prestigio UC es reconocido esencialmente por la calidad de sus docentes como por su excelente sistema de enseñanza, los cuales la han transformado en la universidad número uno del país y la mejor universidad de habla hispana en Latinoamérica.

Profesores de Clase Mundial

Nuestro proceso educativo es apoyado y guiado por la excelencia, el sello y el prestigio de los académicos de la Pontificia Universidad Católica de Chile, formados en las mejores universidades a nivel mundial.

Moderno modelo pedagógico

Contamos con una plataforma interactiva, con la última tecnología en educación a distancia, que te permitirá vivir la experiencia del aprendizaje en línea: Acceso a clases en vivo y constante interacción en foros, con académicos y tutores.

Flexibilidad

Tenemos diversos programas académicos que impartimos con un exclusivo e innovador sistema de aprendizaje, enfocado en la flexibilidad y adaptado a tus necesidades de tiempo y espacio, permitiendo que puedas estudiar donde quieras y cuando quieras.

Programas online

Somos un programa de perfeccionamiento profesional 100% online creado por la Pontificia Universidad Católica de Chile, orientado a actualizar tus conocimientos y entregarte nuevas herramientas y habilidades que te permitirán mejorar, ampliar e incluso transformar tu carrera profesional.

Requisitos de postulación

Para postular a un programa de Clase Ejecutiva UC debes cumplir alguno de estos requisitos:

  • Título profesional universitario.
  • Título de egresado de instituto profesional o centro de formación técnica.
  • Conocimientos equivalentes en el área del programa al que estás postulando.




Inversión

Precios

Precio :
CLP $2.190.000

Matricúlate ahora y obtén un
20% dto.

(Precio final CLP $1.752.000)

Matricúlate Aquí

Medios de pagos Chile

  • 12 cuotas tarjeta de crédito sin interés para nuestros diplomados y 3 cuotas tarjeta de crédito sin interés para nuestros cursos. En caso de existir interés, este será generado específicamente por su banco y no por Clase Ejecutiva UC.
  • Transferencia bancaria.

Medios de pagos internacional

  • Pago al contado a través de transferencia bancaria
  • Pago en cuotas para nuestros diplomados a través de cuponera electrónica (*)
  • Pago a través de Paypal

(*) Cuponera electrónica: Sistema de pago en cuotas, sin interés.

 

Clase Ejecutiva UC

Certificados apostillados

Una de las características más importantes de los títulos emitidos por la Pontificia Universidad Católica de Chile es que pueden ser apostillados gracias al Convenio de la Apostilla de la Haya. La Apostilla es una certificación única que permite agilizar el proceso de acreditación y certificación de títulos o documentos extranjeros en algún país miembro del Convenio de la Apostilla. Los documentos emitidos en Chile para ser utilizados en un país miembro del Convenio de la Apostilla que hayan sido certificados mediante una Apostilla, deberán ser reconocidos en cualquier otro país del convenio sin necesidad de otro tipo de certificación. Más información sobre el proceso de Apostilla en http://apostilla.gob.cl. El certificado del curso es apostillable. Sin embargo, la Clase Ejecutiva UC no se hace parte de la gestión de apostillarlo.

Un día en Clase Ejecutiva UC