Diplomado en Python y ciencia de datos
Matricúlate ahora y obtén un
30% dto.
(Precio final CLP $1.533.000)
Objetivos
ACLARA TUS DUDAS
Quisimos responder las preguntas que muchos nos hacen a través de este video.
Malla académica
Curso Herramientas básicas de programación en Python
Profesor:
Felipe López Rojas, Magíster Pontificia Universidad Católica de Chile Ver más...
Felipe López Rojas, Magíster Pontificia Universidad Católica de Chile Ver más...
Contenidos
Introducción a la programación
- Motivación
- De los datos a la información
- Datos, información y programación ¿Cómo conviven hoy estos elementos en el mundo laboral?
- ¿Qué es la programación?
- Aplicaciones prácticas
- La programación en el mundo laboral y cómo debe convertirse en un hábito
- Secuencias de comandos en Python
- Operaciones básicas
- Creación y asignación de variables
- Operaciones lógicas
Control de Flujo
- Control de Flujo:
- If
- Else
- Elif
- Uso en conjunto
- Ciclos:
- While
- For
Tipos de datos y funciones
- Tipos de datos: Enteros, decimales, textos y listas.
- Strings
- ¿Qué es un string?
- Funciones básicas de un string
- Funciones avanzadas de un string
- Funciones
- ¿Qué es una función?
- ¿Por qué ocupar funciones?
- Declaración y uso de funciones
- Listas
- Creación de listas
- Obtener elementos
- Añadir elementos o quitar elementos
- Operaciones sobre listas
Procesamiento de datos
- Listas de listas
- Archivos
- Cómo se interactúa con archivos y para qué sirven
- Leer archivos
- Escribir archivos
- Procesamiento de datos
- Carga masiva
- Edición masiva
- Ejemplos prácticos
Diccionarios y tuplas
- Listas y listas de listas
- Manipulación de listas
- Funciones sobre listas
- Diccionarios
- Operaciones sobre diccionarios
- Aplicaciones de diccionarios
- Aplicaciones con listas y diccionarios
- Tuplas como tipo de dato inmutable
- Operaciones sobre tuplas
- Combinando listas, tuplas y diccionarios
Funciones
- Concepto de función
- Definición de funciones
- Parámetros y valores de retorno
- Importación y llamado de módulos
- Invocación de funciones y scope
- Parámetros con nombre y parámetros por defecto
- Funciones recursivas
- Aplicación de funciones
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Desarrollo de software con Python
Profesor:
Antonio Ossa Guerra, Magíster, Pontificia Universidad Católica de Chile
Antonio Ossa Guerra, Magíster, Pontificia Universidad Católica de Chile
Plan de estudios
Clases en vivo
Se realizan tres clases en vivo. La primera como ayuda para el primer proyecto de programación con estructuras de datos secuenciales y no secuenciales. La segunda, para apoyar el segundo proyecto acerca de programación orientada a objetos. Y la tercera, como ayuda para el proyecto final. Durante las clases en vivo los estudiantes pueden resolver dudas prácticas respecto a la materia y sus proyectos.
Trabajos
Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos. El primero relacionado con el uso de estructuras secuenciales y no secuenciales. El segundo, con programación orientada a objetos. El último proyecto tiene características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto. La evaluación se complementa, además, con cuestionarios de alternativas que miden comprensión sobre los conceptos de cada semana.
Contenidos
Introducción al lenguaje de programación Python y su sintaxis
Estructuras de datos secuenciales: listas, tuplas, colas
Estructuras de datos no secuenciales: diccionarios y sets
Clases, objetos, atributos y métodos
Interacción entre objetos
Uso de módulos y bibliotecas existentes
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Python y bases de datos
Profesor:
Jaime Navón Cohen, Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Jaime Navón Cohen, Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Plan de estudios
Clase en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software, la forma correcta del uso de algunas herramientas, etc.
Trabajo individual
Los participantes deben aplicar los conocimientos aprendidos en tres trabajos o miniproyectos concretos. El primer trabajo (miniproyecto 1) consiste en construir una base de datos a partir de data en formato csv y luego escribir un programa Python que se conecte con dicha base de datos para agregar nuevas filas y formular algunas consultas simples. En el segundo (miniproyecto 2), se trabaja con un dataset más complejo que da origen a una BD con varias tablas y, además, de interactuar desde Python en forma simple, se usa la librería Pandas. En el tercer trabajo (miniproyecto 3), la data debe obtenerse desde una API JSON y se debe escribir un programa Python que cargue esa información en un motor MongoDB para luego hacer consultas sobre él.
Contenidos
Conceptos y familiarización con ambiente de trabajo
- Conceptos fundamentales de bases de datos
- El modelo relacional
- MySQL desde el Workbench
Crear una BD simple con solo dos tablas y poblarla con información
- Introducción al lenguaje SQL
- Creación de una base de datos desde Python
- Tablas y tipos de datos
- Creación de tablas desde Python
- Agregar y eliminar información a una tabla desde Python
SQL y Dataframes
- Introducción a Pandas y dataframes
- SQL joins
- Transacciones en bases de datos
- Eliminación y modificación de filas en una tabla
Extracción de información más sofisticada de la BD con consultas más complejas y trabajo con Dataframes
- Operaciones de conjunto y cláusulas de agrupación
- Ordenamiento y agrupación
- Carga de contenido CSV desde una API Web
- Procesamiento de un archivo en formato CSV
Bases de datos NoSQL de documentos, MongoDB y JSON
- Bases de datos NoSQL
- Introducción a MongoDB
- El formato JSON
- MongoDB desde Python
Extraer y procesar información JSON desde una BD
- MongoDB y desde una API en la web y procesarla con un programa Python
- Conectando con MongoDB
- Interactuando con el motor MongoDB desde un programa
- Procesamiento de JSON desde Python
- Extracción de JSON desde una API web
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Introducción a minería de datos y machine learning
Profesor:
Mauricio Arriagada Benítez, Doctor Pontificia Universidad Católica de Chile
Mauricio Arriagada Benítez, Doctor Pontificia Universidad Católica de Chile
Plan de estudios
Clase en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo la correcta instalación de herramientas de software y el uso apropiado de algunas herramientas. Asimismo, para la preparación de set de datos para la reducción de dimensionalidad, y guiar el trabajo en las diferentes técnicas de reglas de asociación, algoritmos de clasificación, clustering y medidas de similaridad.
Trabajo individual
Los alumnos deben aplicar los conocimientos aprendidos en tres trabajos o pequeños proyectos concretos. El último proyecto suele tener características integradoras y, por lo tanto, es un poco más largo y completo que los anteriores. Aun cuando el trabajo se entrega en forma individual y no grupal, los alumnos pueden conversar y discutir sobre sus ideas de soluciones con sus compañeros, antes de desarrollar y entregar el proyecto. Los miniproyectos estarán enfocados en: procesar y consolidar datos aplicando ETL (extracción, transformación y carga de datos); utilizar el algoritmo Random Forest y KNN para dos casos propuestos, y realizar el preprocesamiento de una base de datos propuesta, aplicando dos algoritmos de los vistos en clases para así mostrar sus rendimientos a través de evaluar al clasificador y presentar las métricas, pudiendo establecer una comparación de rendimiento entre los dos algoritmos elegidos.
Contenidos
Conceptos sobre Data Warehouse y uso de Dataframes
Procesamiento y consolidación de datos
- Preprocesamiento de datos
- Selección y transformación de datos
Reglas de asociación
Aplicación de los algoritmos Random Forest y KNN
- Árbol de decisión
- KNN
- Random Forest
Aplicación de los algoritmos K-Means y DBSCAN
- Clustering
- K-means
- Clustering jerárquico
Introducción al Machine Learning
- Modelo de entrenamiento
- Métricas de evaluación
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Jefe de programa
Jaime Navón Cohen
Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.). Además tiene un Master of Science, Technion-Israel Institute of Technology (Israel). Es ingeniero civil electricista, Pontificia Universidad Católica de Chile (UC).
Asimismo, es profesor asociado del Departamento de Ciencia de la Computación de la UC.
Jefe de programa
Profesores
Antonio Ossa Guerra
Magíster, Pontificia Universidad Católica de Chile
Antonio Ossa Guerra tiene un Magíster en Ciencia de la Computación, Pontificia Universidad Católica de Chile (UC). Es también ingeniero civil de Industrias con Diploma en Ingeniería de Computación UC. Ingeniero en machine learning de PhageLab.
Felipe López Rojas
Magíster Pontificia Universidad Católica de Chile
Felipe López Rojas es magíster en Ciencias de la Ingeniería mención Ciencias de la Computación de la Pontificia Universidad Católica de Chile (UC). Actualmente es alumno del Doctorado en Ciencias de la Ingeniería mención Ciencias de la Computación de la UC. Asimismo, es ingeniero civil industrial en Tecnologías de la Información UC.
Jaime Navón Cohen
Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.). Además tiene un Master of Science, Technion-Israel Institute of Technology (Israel). Es ingeniero civil electricista, Pontificia Universidad Católica de Chile (UC). Asimismo, es profesor asociado del Departamento de Ciencia de la Computación de la UC.
Jefe de programa
Mauricio Arriagada Benítez
Doctor Pontificia Universidad Católica de Chile
Mauricio Arriagada Benítez es doctor y máster en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile (UC). También es ingeniero civil en Computación e Informática, Universidad de Tarapacá (Chile). Asimismo, tiene un Master in Computer Science, University of Northern Iowa (EE.UU.), y un Máster en Ingeniería de Software, Universidad de Tarapacá (Chile).