Diplomado en Big data y machine learning
Matricúlate ahora y obtén un
25% dto.
(Precio final CLP $1.717.500)
Objetivos
Taller optativo
Malla académica
Esta es una actividad opcional y gratis que no considera ningún tipo de certificación y/o constancia. Podrás obtener el beneficio al matricularte en la impartición de Marzo 2026
Plan de estudios
ESTRATEGIAS METODOLÓGICAS
El curso está constituido de tres clases elearning y una clase sincrónica.
- Aprendizaje autónomo asincrónico
- Clase expositiva
- Foro formativo
- Controles formativos
ESTRATEGIAS EVALUATIVAS
El curso cuenta con las siguientes actividades de evaluación formativa:
- 3 controles individuales
- 1 foro
Contenidos
Liderazgo y gestión personal
- Importancia del autoconocimiento y la gestión personal
- Manejo del tiempo
- Manejo del estrés
Gestión emocional y capital psicológico
- Importancia de las emociones en el funcionamiento humano
- Estrategias de gestión emocional
- Capital psicológico (autoeficacia, optimismo, esperanza y resiliencia)
Proactividad y desarrollo de carrera
- Proactividad y agilidad de aprendizaje
- Visión y propósito
- Desarrollo de carrera
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Python para machine learning
Profesor:
Francisco Pérez Galarce, Ph.D (c) Pontificia Universidad Católica de Chile
Francisco Pérez Galarce, Ph.D (c) Pontificia Universidad Católica de Chile
Plan de estudios
Clase en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software y el uso apropiado de algunas herramientas, además de apoyar el desarrollo de casos de estudio. Con estos últimos, se busca que los alumnos se vean enfrentados a situaciones más cercanas a la realidad, recorriendo las distintas etapas de los proyectos de machine learning.
Trabajo individual
Los alumnos deberán aplicar los conocimientos adquiridos a lo largo del curso mediante la realización de tres trabajos o miniproyectos individuales. Cada uno de ellos busca fortalecer distintas habilidades de análisis, aplicación e integración de los conceptos aprendidos. Aunque las entregas son individuales, se fomenta el intercambio de ideas y la discusión entre compañeros antes del desarrollo y entrega de los trabajos, con el fin de enriquecer el aprendizaje colaborativo.
Contenidos
Introducción al Aprendizaje de Máquinas con Python
- Introducción al aprendizaje de máquina
- Tipos de problemas en aprendizaje de máquina
Preprocesamiento de datos con Python
- Introducción a librerías del ecosistema de data science
- Tipos de variables
- Análisis descriptivo de variables
- Transformación de variables
- Visualización de variables
- Imputación de datos
Regresiones
- Aprendizaje supervisado
- Regresión lineal
- Regresiones polinomiales
- Regresión con penalización
- Regresión logística
Aprendizaje supervisado
- Naive Bayes
- Evaluación de clasificadores
- Árboles de decisión
- Random Forest
- Random Forest para regresión
Redes neuronales
- Introducción a las redes neuronales artificiales
- Tecnologías para desarrollo de redes neuronales artificiales
- Redes neuronales artificiales
Aprendizaje no supervisado
- Aprendizaje no supervisado
- K-Means
- Cluster jerárquico
- Evaluación de clusters
- Reducción de dimensionalidad
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Técnicas de big data para machine learning
Profesor:
Gabriel Sepúlveda, Ph.D (c) Pontificia Universidad Católica de Chile Ver más...
Gabriel Sepúlveda, Ph.D (c) Pontificia Universidad Católica de Chile Ver más...
Plan de estudios
Clase en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, relacionados con el uso del ambiente de desarrollo Google Colaboratory, con la instalación de herramientas Hadoop y Spark o con la utilización de la API para el almacenamiento y procesamiento de big data.
Trabajo individual
Los alumnos deberán aplicar los conocimientos adquiridos a lo largo del curso mediante la realización de tres trabajos o miniproyectos individuales. Cada uno de ellos busca fortalecer distintas habilidades de análisis, aplicación e integración de los conceptos aprendidos. Aunque las entregas son individuales, se fomenta el intercambio de ideas y la discusión entre compañeros antes del desarrollo y entrega de los trabajos, con el fin de enriquecer el aprendizaje colaborativo.
Contenidos
Ecosistema Hadoop
- Introducción a big data
- Instalación de herramientas Hadoop
Herramientas de Ecosistema Hadoop
- Hadoop MapReduce
- Apache Hive
- Apache Pig
Apache Spark
- Programación en Apache Spark
Data Analytics con Apache Spark
- Apache Flume
- Spark Streaming
- Spark SQL
Machine Learning con Apache Spark
- Spark MLLIB: algoritmos supervisados
- Spark MLLIB: algoritmos no supervisados
Técnicas de visualización
- Reducción de dimensionalidad
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Aplicaciones de machine learning y ciencia de datos
Profesor:
Jaime Navón Cohen, Ph.D University of North Carolina at Chapel Hill (Estados Unidos) Ver más...
Jaime Navón Cohen, Ph.D University of North Carolina at Chapel Hill (Estados Unidos) Ver más...
Plan de estudios
Clase en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para presentar un caso real de aplicación de machine learning y ciencia de datos, haciendo énfasis en la oportunidad, solución, dificultades y beneficios, para luego discutir con el grupo y responder consultas.
Trabajo Individual
Los alumnos deberán aplicar los conocimientos adquiridos a lo largo del curso mediante la realización de tres trabajos o miniproyectos individuales. Cada uno de ellos busca fortalecer distintas habilidades de análisis, aplicación e integración de los conceptos aprendidos. Aunque las entregas son individuales, se fomenta el intercambio de ideas y la discusión entre compañeros antes del desarrollo y entrega de los trabajos, con el fin de enriquecer el aprendizaje colaborativo.
Contenidos
Introducción al aprendizaje de máquinas y ciencia de datos
- Conceptos de inteligencia de negocios y minería de datos
- Conceptos de ciencia de datos y aprendizaje de máquina
- El auge actual del aprendizaje de máquina e inteligencia artificial
Tipos de datos y aplicaciones
- Aplicaciones sobre transacciones estructuradas
- Aplicaciones sobre texto
- Aplicaciones sobre audio
- Aplicaciones sobre video
Técnicas de ciencia de datos y aprendizaje de máquina
- Visualización en ciencia de datos
- Aprendizaje supervisado
- Aprendizaje no supervisado
- Aprendizaje reforzado
Aplicaciones en los negocios
- Aplicaciones de visualización en ciencia de datos
- Aplicaciones de aprendizaje supervisado
- Aplicaciones de aprendizaje no supervisado
- Aplicaciones de aprendizaje reforzado
Casos de ciencia de datos
- Caso en compañía de seguros
- Caso en banca
- Caso en retail
- Caso en calidad del aire
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Curso Visualización de información en la era del big data
Profesor:
Denis Parra Santander, Ph.D University of Pittsburgh (EE.UU.) Ver más...
Denis Parra Santander, Ph.D University of Pittsburgh (EE.UU.) Ver más...
Plan de estudios
Clases en vivo
Un profesor ayudante interactúa directamente con un grupo reducido de participantes para ayudar a resolver problemas técnicos remanentes, como por ejemplo, la correcta instalación de herramientas de software, el uso apropiado de algunas herramientas, etc.
Para este curso se revisarán formas de interpretar y aplicar del modelo anidado de visualización para validar visualizaciones existentes y para justificar decisiones de diseño de nuevos gráficos de visualización de información. Se revisarán y aplicarán bibliotecas en Python especializadas en visualización. Y con participación de los alumnos se analizarán casos de visualización.
Trabajo Individual
Los alumnos deberán aplicar los conocimientos adquiridos a lo largo del curso mediante la realización de tres trabajos o miniproyectos individuales. Cada uno de ellos busca fortalecer distintas habilidades de análisis, aplicación e integración de los conceptos aprendidos. Aunque las entregas son individuales, se fomenta el intercambio de ideas y la discusión entre compañeros antes del desarrollo y entrega de los trabajos, con el fin de enriquecer el aprendizaje colaborativo.
Contenidos
- Ejemplos históricos de Visualización de datos.
- Conceptos fundamentales de visualización de información.
- Funciones básicas de matplotlib y seaborn.
- Modelo anidado de Munzner para diseño y validación de visualización.
- Reglas y recomendaciones generales para visualizaciones efectivas.
- Diseño e implementación de gráficos simples para datos tabulares usando modelo anidado.
- Diseño e implementación de gráficos avanzados para datos tabulares usando modelo anidado.
- Reducción de dimensionalidad.
- Diseño e implementación de gráficos avanzados para datos de red usando modelo anidado.
- Visualización básica de datos de texto.
- Visualización básica de datos espaciales.
Clase Ejecutiva UC se reserva el derecho a modificar el contenido en cualquier momento.
Jefe de programa
Jaime Navón Cohen
Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.)....
Profesores
Denis Parra Santander
Ph.D University of Pittsburgh (EE.UU.)
Denis Parra Santander es Ph.D Computer Science, University of Pittsburgh (Pensilvania, EE.UU). Ad...
Fernando Florenzano
Magíster Pontificia Universidad Católica de Chile
Fernando Florenzano tiene un Magíster en Ciencias de la Ingeniería, Pontificia Universidad Católi...
Francisco Pérez Galarce
Ph.D (c) Pontificia Universidad Católica de Chile
Francisco Pérez Galarce es Ph.D (c) in Computer Science, Pontificia Universidad Católica de Chile...
Gabriel Sepúlveda
Ph.D (c) Pontificia Universidad Católica de Chile
Gabriel Sepúlveda es Ph.D (c) en Ciencias de la Ingeniería área Ciencia de la Computación, Pontif...
Hernán Valdivieso
Magíster, Pontificia Universidad Católica de Chile
Hernán Valdivieso tiene un Magíster en Ciencias de la Ingeniería de la Pontificia Universidad Cat...
Iván Lillo
Doctor Pontificia Universidad Católica de Chile
Iván Lillo es doctor en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile (UC)....
Jaime Navón Cohen
Ph.D University of North Carolina at Chapel Hill (Estados Unidos)
Jaime Navón Cohen es Ph.D Computer Science, University of North Carolina at Chapel Hill (EE.UU.)....
Patricio Cofré
Máster Northwestern University (EE.UU.)
Patricio Cofré tiene un Master of Engineering Management, Northwestern University (Chicago, EE.UU...
Ventajas



